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Abstract—The intermolecular Pauson–Khand reaction between norbornene and dicobalt carbonyl complexes of phenylacetylene
substituted with chiral phosphorus ligands has been investigated. High yields (P 98%) and enantiomeric excesses of up to 56% have
been observed.
� 2004 Elsevier Ltd. All rights reserved.
The Pauson–Khand reaction, which unites an alkyne, an
alkene, and carbon monoxide through the agency of
dicobalt octacarbonyl, is an effective method for con-
structing cyclopentenones.1 Over the 30-year period
since its discovery in 1973, significant insight has been
gained into the mechanism of this intriguing reaction
and its usefulness has been broadened through the dis-
covery of promoters and catalytic techniques.2

Effort has also been expended toward developing an
asymmetric variant of this reaction,3 principally through
the use of a chiral auxiliary attached to the alkyne or
alkene substrate,4 and by replacing a carbonyl ligand
in the complex with a chiral phosphine ligand.5 This lat-
ter approach has to date proven considerably more suc-
cessful in the intramolecular than intermolecular version
of this and similar reactions.6 The first intermolecular
enantioselective approach was disclosed in 1988 by
Pauson and co-workers, who used the chiral unidentate
phosphine Glyphos�.5a Improvements in this approach
were later reported,5b–e but still the two diastereomers
had to be separated prior to cyclization with the olefin.

In an effort to overcome this major drawback, a few
years ago we undertook a study of bidentate bridging
ligands with the goal of ultimately being able to generate
unique chiral complexes that would be effective in the
asymmetric Pauson–Khand reaction.7 Pauson and co-
workers8 had reported in 1988 that achiral bis(diphenyl-
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phosphino)methane (dppm) had a markedly deleterious
effect on the cyclization of the phenylacetylene–dicobalt
complex with norbornene (24% yield vs 60% yield
without dppm);9 we felt, however, that diphosphine
complexes could be made more reactive through modifi-
cation of the electronic properties of the phosphine
substituents. In 1999, we were able to demonstrate7

that electron-deficient diphosphinoamine ligands did in-
deed lead to vastly improved yields in this reaction (up
to 98%). These novel ligands, relative to common phos-
phine ligands, facilitate the first step of the Pauson–
Khand reaction by rendering the carbon monoxides
more labile by virtue of the increase in the backbonding
from cobalt to phosphorus and, at the same time, pro-
tect the intermediate dicobalt–alkyne complex against
oxidation and clusterization pathways.

The second phase of this program has focused on the use
of chiral electron-deficient ligands in the intermolecular
Pauson–Khand reaction.10 The simplest way to intro-
duce chirality in the diphosphinoamines, a priori, is by
placing a chiral substituent on nitrogen. In preliminary
work, it was found that the diphosphinoamine ligand
1a could be readily prepared from 1-phenylethylamine
and chlorodiphenylphosphine11 and then through reac-
tion with 2 transformed into the bridged complex 3a;12

in the presence of norbornene, 3a afforded cyclopente-
none 4 with a small, but encouraging, enantiomeric ex-
cess (16% ee, 57% yield) (Scheme 1).13

Since electron-withdrawing substituents on phosphorus
could be expected not only to improve the yield
as before, but in addition to increase the asymmetric
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Table 1. BINOL phosphoramidite and phosphite derivatives

R R0 Ref.

8a OC6H5 H 25

8b OCH(CF3)2 H 26

8c N(CH3)2 H 27

8d N(i-C3H7)2 H 27

8e N(C2H5)2 H 27

8f N(C2H5)2 CH3 This work

8g N(C2H5)2 C6H5 This work
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induction in the reaction by bringing the chiral ligand
nearer to the diastereotopic cobalts through a shorten-
ing of the Co–P bonds, the derivatives 1b,c were next
prepared.14 The corresponding chiral complexes 3b,c,
formed in 40–45% yield, on exposure to norbornene in
warm toluene produced the expected cyclopentenone 4
in 90% and 99% yield, respectively, but, surprisingly,
devoid of enantiomeric excess (Scheme 1).

Given that asymmetric induction depends on the
ligand�s ability to provide a chiral environment close
to the reaction center and that the distance of the chiral
center on the amine is significant in the complexes 3,
induction in 3a must occur through transmission, that
is, through the spatial orientation imposed on the phen-
yl groups on phosphorus.15 Hence, the small fluoro and
the mobile hexafluoroisopropoxy16 substituents should
be, and are, ineffective. Merely increasing the size of
the amine cannot provide a workable solution to this
problem: bulky amines in reaction with PCl3 tend to give
cyclodiphosphazanes17 and with chlorodiphenylphos-
phine rearranged products18 and, in fact, all reactions
directed toward diphosphinoamine formation from
1-(2,6-dichlorophenyl)ethylamine and 2-amino-3,3-di-
methylbutane did indeed fail.

Placing the chiral groups on phosphorus, thereby bring-
ing the chiral and the reactive centers into closer proxi-
mity, was also investigated. The Pauson–Khand
reaction of complex 7, prepared as shown in Scheme
2,19 with norbornene gave cyclopentenone 4 in 83%
yield, but unfortunately with only 17% ee, again a high
yield but low enantiomeric excess.20

The difficulties encountered in this bridging-ligand
approach led us to consider an attractive alternative:
complexation of each of the cobalts with identical chiral
monophosphine ligands. This approach, as that above,
effectively obviates the necessity of a high degree of Co
discrimination in the complexation.
Scheme 2.
It has long been known that two ligands can be intro-
duced into acetylene–dicobalt hexacarbonyl complexes
and these ligands occupy the two axial positions21

(Fig. 1). In a recent example, Pericas and co-workers
prepared a phenylacetylene–dicobalt tetracarbonyl com-
plex in which achiral tripyrrolylphosphines were in the
axial positions.22 Significantly, they also reported an
85% yield in the reaction with norbornene, showing that
the beneficial effect of electron-deficient substituents in
diphosphinoamines, which we had previously observed,
is also found with the monophosphine ligands. The
chiral ligands we chose to investigate were the readily
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prepared BINOL phosphoramidite and phosphite deriv-
atives 8a–g (Table 1).23,24

These chiral, unidentate ligands could be introduced
into the axial positions of the phenylacetylene–dicobalt
hexacarbonyl complex in moderate (nonoptimized)
yields. On warming in toluene solution in the presence
of excess norbornene for 12h, these new complexes pro-
vided cycloadduct 4 in generally good yield and with the
indicated enantiomeric excess (Scheme 3).

While the yields are roughly comparable to those
obtained with the bis-phosphine ligands, in several cases
the induction is significantly better, particularly with the
phosphoramidite 8e. Disappointingly, ortho substitution
in this ligand (8f,g) did not yield an improved enantio-
meric excess, but this is in line with results obtained by
Feringa and co-workers in the conjugate addition of di-
ethylzinc in the presence of chiral copper complexes.27 A
significant improvement with ligand 8e was observed,
however, on lowering the reaction temperature to
60 �C and replacing the toluene with DME: 56% ee,
60% yield.28,29 Although the reaction time is considera-
bly lengthened under these conditions (96h vs 12h), this
represents the best result reported to date (previ-
ously10<10% ee, 29% yield) for the intermolecular Pau-
son–Khand reaction using chiral ligands without
separation of diastereomers.

In conclusion, chiral monophosphine ligands at each of
the axial positions in the acetylene–dicobalt complex
appear to be generally more effective in the asymmetric
intermolecular Pauson–Khand reaction than chiral bis-
phosphine ligands that bridge the two cobalts in equato-
rial positions. The level of enantioselectivity reached
with the chiral phosphoramidites encourages further re-
search on this approach to asymmetric induction in this
important reaction.
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